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Abstract
It has been demonstrated that quantum vacuum energy gravitates according
to the equivalence principle, at least for the finite Casimir energies associated
with perfectly conducting parallel plates. We here add further support to this
conclusion by considering parallel semitransparent plates, that is, δ-function
potentials, acting on a massless scalar field, in a spacetime defined by Rindler
coordinates (τ, x, y, ξ). Fixed ξ in such a spacetime represents uniform
acceleration. We calculate the force on systems consisting of one or two
such plates at fixed values of ξ . In the limit of a large Rindler coordinate ξ

(small acceleration), we recover (via the equivalence principle) the situation
of weak gravity, and find that the gravitational force on the system is just Mg,
where g is the gravitational acceleration and M is the total mass of the system,
consisting of the mass of the plates renormalized by the Casimir energy of each
plate separately, plus the energy of the Casimir interaction between the plates.
This reproduces the previous result in the limit as the coupling to the δ-function
potential approaches infinity.

PACS numbers: 03.70.+k, 04.20.Cv, 04.25.Nx, 03.30.+p

1. Introduction

The subject of quantum vacuum energy, or of Casimir energy, has engendered a certain
controversy from the beginning because of the presence of divergences, which make it
difficult to extract self-energies for single bodies [1–4]. Although it appears that many of
these divergences can be consistently isolated when calculating the Casimir forces between

1 http://www.nhn.ou.edu/%7Emilton.
2 http://www.nhn.ou.edu/%7Eshajesh.
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distinct bodies, the issue of how divergent and finite Casimir energies couple to gravity remains
unclear.

In the last few years, there have been several calculations of the gravitational acceleration
imparted to the Casimir energy associated with a pair of perfectly conducting plates [5–9].
The results were inconsistent, and there was no consensus that the gravitational force agreed
with the equivalence principle. Recently, we have shown that indeed the gravitational force
on a Casimir apparatus is exactly that required by the equivalence principle, that is, that the
gravitational mass of the Casimir energy is just the Casimir energy itself [10]. Other authors
now agree with our conclusion [11]. However, that calculation included only the finite Casimir
energy of the two plates, so the question of what happens to the divergent contributions remains
unanswered.

Here we answer that question. We describe a uniformly accelerated system by Rindler
coordinates [12], which naturally represent frames undergoing hyperbolic motion. We consider
both a single plate, and two plates, both represented by δ-function potentials, what are
sometimes called semitransparent plates. In Minkowski space, the Casimir energies for such
systems have been considered by many authors [3, 13–16]. Saharian et al [17] considered
Dirichlet, Neumann and perfectly conducting plates in Rindler coordinates, and showed for
rigid acceleration of those plates, in the limit of large Rindler coordinate, which corresponds
to the weak gravitational field limit, that the finite Casimir energy undergoes the normal
acceleration. We carry out that calculation here for semitransparent plates (which reduce
to Dirichlet plates in the strong coupling limit) and find that both for a single plate and for
two parallel plates (both orthogonal to the Rindler spatial coordinate) both the divergent and
finite parts of the Casimir energy gravitate according to the equivalence principle, and that the
divergent energies serve to renormalize the inertial and gravitational masses of each separate
plate3.

2. Green’s functions in Rindler coordinates

Relativistically, uniform acceleration is described by the hyperbolic motion,

z = ξ cosh τ and t = ξ sinh τ. (2.1)

Here the proper acceleration of the particle described by these equations is ξ−1, and we have
chosen coordinates so that at time t = 0, z(0) = ξ . Here we are going to consider the
corresponding metric

ds2 = −dt2 + dz2 + dx2 + dy2 = −ξ 2 dτ 2 + dξ 2 + dx2 + dy2. (2.2)

In these coordinates, the d’Alembertian operator takes on a cylindrical form:

−
(

∂

∂t

)2

+

(
∂

∂z

)2

+ ∇2
⊥ = − 1

ξ 2

(
∂

∂τ

)2

+
1

ξ

∂

∂ξ

(
ξ

∂

∂ξ

)
+ ∇2

⊥, (2.3)

where ⊥ refers to the x–y plane.

2.1. Green’s function for one plate

For a scalar field in these coordinates, subject to a potential V (x), the action is

W =
∫

d4x
√

−g(x)L(φ(x)), (2.4)

3 Acceleration of semitransparent plates has been considered by many authors in connection with quantum radiation
[18–22]. Gravitational effects of surface energies in Rindler and de Sitter spacetimes are considered in [23–25].



How does Casimir energy fall? II. Gravitational acceleration of quantum vacuum energy 10937

where x ≡ (τ, x, y, ξ) represents the coordinates, d4x = dτ dξ dx dy is the coordinate volume
element, gµν(x) = diag(−ξ 2, +1, +1, +1) defines the metric, g(x) = det gµν(x) = −ξ 2 is the
determinant of the metric, and the Lagrangian density is

L(φ(x)) = − 1
2gµν(x)∂µφ(x)∂νφ(x) − 1

2V (x)φ(x)2, (2.5)

where for a single semitransparent plate located at ξ1

V (x) = λδ(ξ − ξ1), (2.6)

and λ > 0 is the coupling constant having dimensions of mass. More explicitly, we have

W =
∫

d4x
ξ

2

[
1

ξ 2

(
∂φ

∂τ

)2

−
(

∂φ

∂ξ

)2

− (∇⊥φ)2 − V (x)φ2

]
. (2.7)

Stationarity of the action under an arbitrary variation in the field leads to the equation of
motion [

− 1

ξ 2

∂2

∂τ 2
+

1

ξ

∂

∂ξ
ξ

∂

∂ξ
+ ∇2

⊥ − V (x)

]
φ(x) = 0. (2.8)

The corresponding Green’s function satisfies the differential equation

−
[
− 1

ξ 2

∂2

∂τ 2
+

1

ξ

∂

∂ξ
ξ

∂

∂ξ
+ ∇2

⊥ − V (x)

]
G(x, x ′) = δ(ξ − ξ ′)

ξ
δ(τ − τ ′)δ(x⊥ − x′

⊥). (2.9)

Since in our case V (x) has only ξ dependence, we can write this in terms of the reduced
Green’s function g(ξ, ξ ′):

G(x, x ′) =
∫ ∞

−∞

dω

2π

∫
d2k⊥
(2π)2

e−iω(τ−τ ′) eik⊥·(x−x′)⊥g(ξ, ξ ′), (2.10)

where g(ξ, ξ ′) satisfies

−
[

1

ξ

∂

∂ξ
ξ

∂

∂ξ
+

ω2

ξ 2
− k2

⊥ − V (ξ)

]
g(ξ, ξ ′) = δ(ξ − ξ ′)

ξ
. (2.11)

We recognize this equation as defining the semitransparent cylinder problem [26], with
the replacements

m → ζ = −iω, κ → k = k⊥, (2.12)

so that we may immediately write down the solution in terms of modified Bessel functions,

g(ξ, ξ ′) = Iζ (kξ<)Kζ (kξ>) − λξ1K
2
ζ (kξ1)Iζ (kξ)Iζ (kξ ′)

1 + λξ1Iζ (kξ1)Kζ (kξ1)
, ξ, ξ ′ < ξ1, (2.13a)

= Iζ (kξ<)Kζ (kξ>) − λξ1I
2
ζ (kξ1)Kζ (kξ)Kζ (kξ ′)

1 + λξ1Iζ (kξ1)Kζ (kξ1)
, ξ, ξ ′ > ξ1. (2.13b)

Note that in the strong coupling limit, λ → ∞, this reduces to Green’s function satisfying
Dirichlet boundary conditions at ξ = ξ1.

2.2. Minkowski-space limit

To recover the Minkowski-space Green’s function for the semitransparent plate, we use the
uniform asymptotic expansion (Debye expansion), based on the limit

ξ → ∞, ξ1 → ∞, ξ − ξ1 finite , ζ → ∞, ζ/ξ1 finite. (2.14)
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For large ζ ,

Iζ (ζ z) ∼
√

t

2πζ
eζη(z)

∞∑
n=0

1

ζ n
un(t), Kζ (ζ z) ∼

√
πt

2ζ
e−ζη(z)

∞∑
n=0

(−1)n

ζ n
un(t), (2.15)

where

t = 1√
1 + z2

and η(z) =
√

1 + z2 + ln

[
z

1 +
√

1 + z2

]
, (2.16)

and un(t) are polynomials of order 3n in t [27]. Here zζ = kξ , for example. Expanding the
above expressions around some arbitrary point ξ0, chosen such that the differences ξ − ξ0,

ξ ′ − ξ0 and ξ1 − ξ0 are finite, we find for the leading term, for example,√
ξξ ′Iζ (kξ)Kζ (kξ ′) ∼ 1

2κ
eκ(ξ−ξ ′), (2.17)

where κ2 = k2 + ζ̂ 2, ζ̂ = ζ/ξ0. In this way, taking for simplicity ξ0 = ξ1, we find Green’s
function for a single plate in Minkowski space,

ξ1g(ξ, ξ ′) → g(0)(ξ, ξ ′) = 1

2κ
e−κ|ξ−ξ ′ | − λ

λ + 2κ

1

2κ
e−κ|ξ−ξ1| e−κ|ξ ′−ξ1|. (2.18)

2.3. Green’s function for two parallel plates

For two semitransparent plates perpendicular to the ξ -axis and located at ξ1, ξ2, with couplings
λ1 and λ2, respectively, we find the following form for Green’s function:

g(ξ, ξ ′) = I<K> − λ1ξ1K
2
1 + λ2ξ2K

2
2 − λ1λ2ξ1ξ2K1K2(K2I1 − K1I2)



II′, ξ, ξ ′ < ξ1,

(2.19a)

= I<K> − λ1ξ1I
2
1 + λ2ξ2I

2
2 + λ1λ2ξ1ξ2I1I2(I2K1 − I1K2)



KK′, ξ, ξ ′ > ξ2,

(2.19b)

= I<K> − λ2ξ2K
2
2 (1 + λ1ξ1K1I1)



II′ − λ1ξ1I

2
1 (1 + λ2ξ2K2I2)



KK′

+
λ1λ2ξ1ξ2I

2
1 K2

2



(IK′ + KI′), ξ1 < ξ, ξ ′ < ξ2, (2.19c)

where


 = (1 + λ1ξ1K1I1)(1 + λ2ξ2K2I2) − λ1λ2ξ1ξ2I
2
1 K2

2 , (2.20)

and we have used the abbreviations I1 = Iζ (kξ1), I = Iζ (kξ), I′ = Iζ (kξ ′), etc.
Again, we can check that these formulae reduce to the well-known Minkowski-

space limits. In the ξ0 → ∞ limit, the uniform asymptotic expansion (2.15) gives, for
ξ1 < ξ, ξ ′ < ξ2,

ξ0g(ξ, ξ ′) → g(0)(ξ, ξ ′) = 1

2κ
e−κ|ξ−ξ ′ | +

1

2κ
̃

[
λ1λ2

4κ2
2 cosh κ(ξ − ξ ′)

− λ1

2κ

(
1 +

λ2

2κ

)
e−κ(ξ+ξ ′−2ξ2) − λ2

2κ

(
1 +

λ1

2κ

)
eκ(ξ+ξ ′−2ξ1)

]
, (2.21)

where (a = ξ2 − ξ1)


̃ =
(

1 +
λ1

2κ

) (
1 +

λ2

2κ

)
e2κa − λ1λ2

4κ2
, (2.22)

which is exactly the expected result [14]. The correct limit is also obtained in the other two
regions.
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3. Gravitational acceleration of Casimir apparatus

We next consider the situation when the plates are forced to ‘move rigidly’ [28] in such a way
that the proper distance between the plates is preserved. This is achieved if the two plates
move with different, but constant proper accelerations.

The canonical energy–momentum or stress tensor derived from the action (2.4) is

Tαβ(x) = ∂αφ(x)∂βφ(x) + gαβ(x)L(φ(x)), (3.1)

where the Lagrange density includes the δ-function potential. The components referring to
the pressure and the energy density are

T33(x) = 1

2

1

ξ 2

(
∂φ

∂τ

)2

+
1

2

(
∂φ

∂ξ

)2

− 1

2
(∇⊥φ)2 − 1

2
V (x)φ2 (3.2a)

1

ξ 2
T00(x) = 1

2

1

ξ 2

(
∂φ

∂τ

)2

+
1

2

(
∂φ

∂ξ

)2

+
1

2
(∇⊥φ)2 +

1

2
V (x)φ2. (3.2b)

The latter may be written in an alternative convenient form using the equations of motion
(2.8):

T00 = 1

2

(
∂φ

∂τ

)2

− 1

2
φ

∂2

∂τ 2
φ +

ξ

2

∂

∂ξ

(
φξ

∂

∂ξ
φ

)
+

ξ 2

2
∇⊥ · (φ∇⊥φ). (3.3)

The force density is given by

fλ = − 1√−g
∂ν(

√−gT ν
λ) +

1

2
T µν∂λgµν, (3.4)

or in Rindler coordinates

fξ = −1

ξ
∂ξ (ξT ξξ ) − ξT 00. (3.5)

When we integrate over all space to get the force, the first term is a surface term which does
not contribute4:

F =
∫

dξ ξfξ = −
∫

dξ

ξ 2
T00. (3.6)

This could be termed the Rindler coordinate force per area, defined as the change in momentum
per unit Rindler coordinate time τ per unit cross-sectional area. If we multiply F by the
gravitational acceleration g, we obtain the gravitational force per area on the Casimir energy.
This result (3.6) seems entirely consistent with the equivalence principle, since ξ−2T00 is the
energy density. Using expression (3.3) for the energy density, taking the vacuum expectation
value and rescaling ζ = ζ̂ ξ , we see that the gravitational force per cross-sectional area is
merely

F =
∫

dξ ξ

∫
dζ̂ d2k
(2π)3

ζ̂ 2g(ξ, ξ). (3.7)

4 Note that in previous works, such as [14, 15], the surface term was included, because the integration was carried
out only over the interior and exterior regions. Here we integrate over the surface as well, so the additional so-called
surface energy is automatically included. Note, however, if equation (3.5) is integrated over a small interval enclosing
the δ-function potential,∫ ξ1+ε

ξ1−ε

dξ ξfξ = −ξ1
T ξξ ,

where 
T ξξ is the discontinuity in the normal–normal component of the stress density. Dividing this expression by
ξ1 gives the usual expression for the force on the plate.
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This result for the energy contained in the force equation (3.7) is an immediate
consequence of the general formula for the Casimir energy [29]:

Ec = − 1

2i

∫
(dr)

∫
dω

2π
2ω2G(r, r), (3.8)

in terms of the frequency transform of Green’s function,

G(x, x ′) =
∫ ∞

−∞

dω

2π
e−iω(t−t ′)G(r, r′). (3.9)

Alternatively, we can start from the following formula for the force density for a single
semitransparent plate, following directly from the equations of motion (2.8),

fξ = 1
2φ2∂ξλδ(ξ − ξ1). (3.10)

The vacuum expectation value of this yields the force in terms of Green’s function,

F = −λ
1

2

∫
dζ d2k
(2π)3

∂ξ1 [ξ1g(ξ1, ξ1)]. (3.11)

3.1. Gravitational force on a single plate

For example, the force on a single plate at ξ1 is given by

F = −∂ξ1

1

2

∫
dζ d2k
(2π)3

ln[1 + λξ1Iζ (kξ1)Kζ (kξ1)]. (3.12)

Expanding this about some arbitrary point ξ0, with ζ = ζ̂ ξ0, using the uniform asymptotic
expansion (2.15), we get

ξ1Iζ (kξ1)Kζ (kξ1) ∼ ξ1

2ζ

1√
1 + (kξ1/ζ )2

≈ ξ1

2κξ0

(
1 − k2

κ2

ξ1 − ξ0

ξ0

)
. (3.13)

From this, if we introduce polar coordinates for the k-ζ̂ integration (κ2 = k2 + ζ̂ 2), the
coordinate force is

F = −1

2
∂ξ1

ξ0

2π2

∫ ∞

0
dκ κ2 λ

2κ + λ

(
1 +

ξ1 − ξ0

ξ0

) (
1 − 〈k2〉

κ2

ξ1 − ξ0

ξ0

)

= − λ

4π2
∂ξ1(ξ1 − ξ0)

∫ ∞

0

dκ

2κ + λ
〈ζ̂ 2〉

= − 1

96π2a3

∫ ∞

0

dy y2

1 + y/λa
, (3.14)

where, for example,

〈ζ̂ 2〉 = 1

2

∫ 1

−1
d cos θ cos2 θκ2 = 1

3
κ2. (3.15)

The divergent expression (3.14) is just the negative of the quantum vacuum energy of a single
plate.
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3.2. Parallel plates falling in a constant gravitational field

In general, we have two alternative forms for the gravitational force on the two-plate system:

F = −(
∂ξ1 + ∂ξ2

)1

2

∫
dζ d2k
(2π)3

ln 
, (3.16)


 given in equation (2.20), which is equivalent to (3.7). (In the latter, however, bulk energy,
present if no plates are present, must be omitted.) From either of the above two methods, we
find that the coordinate force is given by

F = − 1

4π2

∫ ∞

0
dκ κ2 ln 
0, (3.17)

where 
0 = e−2κa
̃, 
̃ given in equation (2.22). The integral may be easily shown to be

F = 1

96π2a3

∫ ∞

0
dy y3

1 + 1
y+λ1a

+ 1
y+λ2a(

y

λ1a
+ 1

)(
y

λ2a
+ 1

)
ey − 1

− 1

96π2a3

∫ ∞

0
dy y2

[
1

y

λ1a
+ 1

+
1

y

λ2a
+ 1

]

(3.18a)

= −(Ec + Ed1 + Ed2), (3.18b)

which is just the negative of the Casimir energy of the two semitransparent plates including
the divergent pieces [14, 15]. Note that Edi , i = 1, 2, are simply the divergent energies (3.14)
associated with a single plate.

3.3. Renormalization

The divergent terms in equation (3.18) simply renormalize the masses (per unit area) of each
plate:

Etotal = m1 + m2 + Ed1 + Ed2 + Ec

= M1 + M2 + Ec, (3.19)

where mi is the bare mass of each plate, and the renormalized mass is Mi = mi + Edi . Thus,
the gravitational force on the entire apparatus obeys the equivalence principle

gF = −g(M1 + M2 + Ec). (3.20)

The minus sign reflects the downward acceleration of gravity on the surface of the earth. Note
here that the Casimir interaction energy Ec is negative, so it reduces the gravitational attraction
of the system.

4. Conclusions

We have found, in conformation with the result given in [10], an extremely simple answer to
the question of how Casimir energy accelerates in a weak gravitational field. Just like any
other form of energy, the gravitational force F divided by the area of the plates is

F

A
= −gEc. (4.1)

This is the result expected by the equivalence principle, but is in contradiction to some earlier
disparate claims in the literature [5–9]. This result exactly agrees with that found by Saharian
et al [17] for Dirichlet, Neumann and perfectly conducting plates for the finite Casimir
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interaction energy. The acceleration of Dirichlet plates follows from our result when the strong
coupling limit λ → ∞ is taken. What makes our conclusion particularly interesting is that
it refers not only to the finite part of the Casimir interaction energy between semitransparent
plates, but also to the divergent parts as well, which are seen to simply renormalize the
gravitational mass of each plate, as they would the inertial mass. The reader may object that
by equating gravitational force with uniform acceleration we have built in the equivalence
principle, and so does any procedure based on Einstein’s equations, but the real nontriviality
here is that quantum fluctuations obey the same universal law.
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Appendix. Casimir and gravitational forces

In this paper we have concentrated on the gravitational acceleration on a rigid Casimir
apparatus, and not on the Casimir forces between the plates. It may be useful to recognize that
both of these forces are contained within the formalism given. So let us consider the force
on one plate of a two plate apparatus, as described by Green’s function given in section 2.3.
According to equation (3.10), the force on plate 2 is given by

F2 = −∂ξ2

1

2

∫
dζ d2k
(2π)3

ln 
, (A.1)

where 
 is given by equation (2.20). We expand the latter in inverse powers of an arbitrary
reference point ξ0 � 1:


(ξ1, ξ2) = 
0(ξ2 − ξ1) +
1

ξ0

1(ξ1, ξ2) + O

(
ξ−2

0

)
. (A.2)

Then, in view of equations (3.17) and (3.18b), the coordinate force on plate 2 is (ζ̂ = ζ/ξ0)

F2 = −ξ0
∂

∂a
Ec +

1

2
∂ξ2

∫
dζ̂ d2k
(2π)3


1


0
(ξ1, ξ2) + O

(
1

ξ0

)
. (A.3)

The first term here, when divided by ξ0 to give the physical force, coincides with the usual
expression for the Casimir force on one semitransparent plate due to a second plate a distance
a away. The second term, when multiplied by g = 1/ξ0, is the gravitational force on the
second plate. When the corresponding forces on plate 1 are added to these, the Casimir
forces cancel, while the sum of the gravitational forces is seen to be exactly that given in
equation (3.18a).
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